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For driven classical diffusion quenched by a strong potential disorder V�x�, we identify a prominent cross-
over regime between the regimes of very small and very large driving forces F, where the corresponding
mobility values ��F� differ exponentially. For disorder with power-law correlations at large distances
�V�x�V�y����x−y�−n , n�0, the crossover is characterized by power-law dependence of the logarithm of ��F�
on the driving force ln ��F��Fn/�n+1�. For finite-range disorder �formally, n=��, the corresponding depen-
dence is linear �“logarithmic susceptibility”�.
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It is well known that disorder can dramatically modify
transport properties of materials. The effect is present even
for classical diffusion �1,2� in one dimension �1D�. Here, the
renormalization of the carrier mobility � can be thought of
as the inverse of the average Boltzmann factor between the
deepest well and the highest hill of the potential energy pro-
file V�x�; it is exponential in the ratio �V2� /T2 �see Eq. �7�
below�. Such a renormalization is suppressed if a sufficiently
large driving force is applied, in which case the carriers just
slide downhill uniformly.

In this paper we study the crossover between these two
regimes as a function of the driving force F. In particular, for
a strong disorder potential with power-law correlations at
large distances �Eqs. �5� and �11��, there is a wide interme-
diate range of values of the driving force F where the loga-
rithm of the effective mobility scales as a nontrivial power of
F �Fig. 1�. With Coulomb-like �n=1� or longer-range corre-
lations, the effective mobility is a singular function of F
already at F=0; the applicability region of the linear trans-
port is essentially absent �Fig. 2�. The crossover regime re-
mains unchanged in the presence of weak interaction be-
tween the particles, introduced here at the level of the self-
consistent Poisson equation which describes a Debye-like
screening in the presence of strong disorder. We also show
that the effective field-dependent mobility ��F� is self-
averaging, and estimate the relevant length scale.

Over so many years after Kramers’ pioneering work �1�,
the problem of driven diffusion in the presence of disorder
has received a lot of attention �1,2�. In particular, the driven
diffusion with correlated disorder was discussed �3,4� by Vi-
nokur et al., who, however, considered only the cases of
short-range disorder, and a correlated disorder with infinite
local correlations whose phenomenology resembles glass dy-
namics.

Single-particle diffusion. In 1D single-particle diffusion is
described by the Smoluchovsky equation

�0ẋ + �xU�x� = f�t� , �1�

where U�x� is the external potential and f�t� is the thermal
force with the correlator f�t�f�t��=2T�0��t− t��. The usual
assumption is that the bare viscous friction coefficient �0 is
determined by fast scattering events off phonons, short-range

disorder, etc. The potential U�x� in Eq. �1� is thus the part of
the overall potential remaining after averaging over some
distance scale; its precise value depends on the specific
physical system. If we assume the carriers have charge e, we
can also define the bare mobility in the absence of disorder,
U�x�=−eEx:

�0 	 x̄̇/E = e/�0. �2�

Equation �1� can be also rewritten as the transport equa-
tion for the average particle density n	n�x , t� and the par-
ticle current j	 j�x , t�,

�tn + �xj = 0, j = − D0�xn − �0
−1n�xU�x�; �3�

the diffusion constant D0 is related to the viscous friction
coefficient �0 by the Einstein relation D0=T /�0.

The usual transport problem corresponds to stationary dif-
fusion in the presence of a random Gaussian potential V�x�
and a constant driving force F, with the total potential energy
U�x�=V�x�−Fx. In the case of a periodic potential V�x�
=V�x+a�, the stationary solution �1,2� corresponds to a con-

FIG. 1. �Color online� Logarithm of the effective mobility renor-
malization ln(��F� /��0�) �Eqs. �6� and �7�� with the correlation
function g�x�= �1+x2 /�1

2�−n/2 for strong disorder �V0 /T=5� and
large driving forces F. Dotted lines guide the eye with the slope of
the intermediate asymptote �14�. The thin solid line is the analytic
result �15� for n=1.

PHYSICAL REVIEW E 72, 011108 �2005�

1539-3755/2005/72�1�/011108�4�/$23.00 ©2005 The American Physical Society011108-1

http://dx.doi.org/10.1103/PhysRevE.72.011108


stant average current j with periodic boundary conditions
n�a�=n�0�. Then, by normalizing the density profile n�x�
over the period, we can use the current to define the average
drift velocity, v̄= j / n̄= ja, as well as the effective viscous
friction coefficient �	F / v̄=F / ja,

� =
�0F

aT



0

a

dx

x

x+a

dx�
e�V�x��−V�x�+F�x−x���/T

1 − e−Fa/T . �4�

Both integrations extend over the entire period, and, as it
often happens in classical transport phenomena, for a suffi-
ciently large a the effect of disorder becomes self-averaging
�the required size can be large, see Eq. �20� below�. In such
cases we can replace Eq. �4� by its average over disorder. We
assume that the disorder distribution is Gaussian with the
correlations

�V�x�� = 0, �V�x�V�x��� = V0
2g�x − x�� , �5�

where the local r.m.s. value V0 is taken as the measure of the
disorder strength and the correlation function g�x� is defined
so that g�0�	1. Then, in the thermodynamical limit a→�,
the effective mobility ��F�	e / ���, and �3,5�

�0

��F�
= eV0

2/T2 F

T



0

�

dx e−Fx/Te−g�x�V0
2/T2

, F � 0. �6�

In the small-F limit �but at the same time aF�T�, this gives
the usual linear response result �6�

���/�0 =
F→0

�0/��0� = exp�V0
2/T2� , �7�

which can be understood as the average of the activation
exponent of the difference between the highest maximum
and the lowest minimum of the potential. Generically, these
would be in different parts of the sample and so the friction
renormalization factors onto a product of the two averages
�eV/T��e−V/T�=exp�V0

2 /T2�, independent of the form of the
correlation function g�x�.

Similarly, the stationary limit of the dynamical perturba-
tion theory �7� is restored by expanding Eq. �6� in powers of
V0 /T and integrating the result by parts

�0

��F�
= 1 −

V0
2

T2

0

�

dx e−Fx/Tg��x� + O�V0
4/T4� . �8�

The disorder correlation function g�x� is expected to de-
crease with x, remaining substantially different from zero
over the distance of the order of the appropriate correlation
length �. It is clear from the weak-disorder expression �8�
that for such finite-range disorder there is a distinct crossover
force F��T /�: while F�F� have relatively little effect on
the mobility, larger values of F begin to suppress the effect
of disorder as large-scale potential valleys and hills gradually
disappear.

To analyze an analogous effect for strong finite-range dis-

order, note that for large V0 /T , 	x	e−g�x�V0
2/T2

is exponen-
tially small for x��. This effectively limits the integration in
Eq. �6� to the region x
�, so that

ln„��F�/��0�… � F�̃/T , �9�

where �̃�� up to a logarithmic correction. Such a depen-
dence on the applied field is analogous to the logarithmic
susceptibility �8� typical for systems with activated transport.
Here it can be understood as the diffusion limited by far-
spaced maxima of the potential, with the particles concen-
trated in the intermediate low minima; the applied driving
force F effectively reduces the energy gap between the
minima and the maxima and therefore has an exponential
effect on the mobility.

The expression �9� is valid qualitatively as long as the
effect of the disorder remains large, �0 /��F��1. The pre-

cise value of �̃ and the prefactor depends on the details of the
disorder correlation function. For example, with the expo-
nential correlation function g�x�=exp�−x /��, the integration
�6� can be done exactly �3� in terms of the incomplete
gamma function; the asymptotic form for V0

2 /T2�max�1,�
	F� /T� is �9�

��F�
��0�

=
�V0/T�2�

��� + 1�
→
�
1

�2��−1/2eF�̃/T, �10�

where �̃=��1+ln(V0
2 / �TF��)�.

The disorder-induced transport nonlinearity becomes even
more pronounced for long-range potentials, e.g., those with
power-law correlations at large distances. With long-range
correlations the far-spaced maxima and minima of the poten-
tial are not entirely independent and, therefore, even a weak
driving force may have a noticeable effect. Specifically, con-
sider a correlation function with the asymptotic form

g�x� = ��1/x�n, x � xmin � �,�1. �11�

With strong enough disorder �g�xmin�V0
2 /T2
1� the integral

�6� will be determined by large x, in which case the expres-
sion can be rewritten approximately as

FIG. 2. �Color online� As in Fig. 1 but for small driving forces
F. Thin solid lines indicate the nonlinear correction calculated ana-
lytically: linear in F for n�1, proportional to Fn for n�1, and Eq.
�15� for n=1.
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��0�
��F�

� In���, In��� 	 

0

�

dx e−x−�x−n
, �12�

where �	�F�1 /T�nV0
2 /T2 can be small or large within the

strong-disorder domain where Eq. �12� is applicable. For suf-
ficiently large �, the integration can be done using the
Gaussian approximation around the maximum at x0
= �n��1/�n+1�,

In��� = �2x0

n + 1
1/2

e−x0�1+1/n�, � 
 1. �13�

As a result, logarithm of ��F� is proportional to a power

ln„��F�/��0�… � �F�̃1/T�n/�n+1�, �14�

with a large temperature-dependent length parameter �̃1
=Cn�1�V0 /T�2/n , Cn	�n+1�1+1/n /n �see Eq. �9��. For small
��1, the integration �12� can be done perturbatively in
powers of ��FnV0

2 for n�1 or, using the identity In���
=I1/n��1/n�, in powers of �1/n�FV0

2/n for n�1. For Coulomb
disorder, n=1, the result is expressed in terms of the Mac-
donald function

��0�/��F��n=1 � I1��� = 2�1/2K1�2�1/2� . �15�

For very small ��1, I1����1−� ln�e1−2� /��, where �
�0.577 is the Euler’s constant; the correction is linear in F
up to a logarithm. Clearly, for strong Coulomb or longer-
range disorder n�1, the mobility ��F� is a singular function
of the driving force at F=0; the linear-transport regime is
essentially absent. These asymptotics are illustrated in Figs.
1 and 2 for a model form of the disorder correlation function
g�x�= �1+x2 /�1

2�−n/2.
Self-averaging. Our conclusions on the scaling of mobil-

ity in strongly disordered diffusive 1D systems are based on
the average, Eq. �6�. To analyze the sample-to-sample fluc-
tuations, consider the irreducible average ���2��	��2�
− ���2 of the effective friction � �Eq. �4��,

���2��
�0

2 = e2V0
2/T2 F2

aT2

0

a

dx e−Fx/T	x

0

a

dy e−Fy/T	y

� 

0

a

dz�	z+�x+y�/2	z−�x+y�/2	z+�x−y�/2
−1 	z−�x−y�/2

−1 − 1� ,

�16�

where the correlator 	z	e−g�z�V0
2/T2

is periodic under z→z
+a. Note that both 	z and 	z

−1 enter Eq. �16�. Therefore,
unlike in the average �6�, both short- and long-distance dis-
order correlations affect the variance of �.

For weak disorder, the expansion of Eq. �16� in powers of
V0 /T�1 begins with the quartic term

���2��
�0

2 =
V0

4

T4

F2

aT2

0

a

dx e−Fx/T

0

a

dy e−Fy/T

0

a

dz

�gz�2gz + gz+x+y + gz+x−y − 2gz+x − 2gz+y�

=
2V0

4

aT4

0

a

dz gz

0

a

du e−Fu/T�ugz+u� − gz+u� � . �17�

The integration is simplified in the limits of weak and large
F; the combined result is

���2��
�0

2 =
V0

4

2aT4min�4�2,T/F�, �2 	 

0

�

dx g2�x� . �18�

Here, �2 is yet another correlation length, finite for short-
range disorder and for long-range disorder with n�1/2.
Clearly, for weak disorder the variation of � is small and it is
further reduced with increasing system size a.

The situation is different for strong disorder V0�T, which
causes an exponential renormalization of �; large fluctua-
tions are also expected. In this case 	x

−1 has a prominent
maximum at the origin. Consequently, the integral �16� gets
an exponentially large contribution from a vicinity of the
point z=0, x=y. Using the steepest descent method, we ob-
tain

���2��
�0

2 =
2F2e4V0

2/T2

aV0
2 


0

�

du
e−2Fu/Te−4g�u�V0

2/T2

g��u� − g��0�
. �19�

For not exceedingly large F the result is determined by val-
ues of u away from the origin. Then, the denominator can be
replaced by a constant �10� −g��0�	2/�0

2, and the integral
acquires precisely the form of Eq. �6�. Generally,

��2

�2 �
���2��
���2 = C

FT�0
2

2aV0
2 e2V0

2/T2
; �20�

while F in the prefactor can be small, it is assumed to be
large on the scale of the system size, Fa /T�1. The normal-
ization in Eq. �20� is chosen so that for short-range disorder
C�1 �see Eq. �9��. For power-law correlation tail C
=In�2n+2�� / �In����2, with �	�F�1 /T�nV0

2 /T2 �see Eqs. �11�
and �12��. Overall, we conclude that the effective mobility is
a self-averaging quantity in the thermodynamical limit. Of
course, the required system size can be large if the fluctua-
tions are strong.

We verified these conclusions by simulating diffusion in a
1D short-range random potential �not shown�. With periodic
boundary conditions the viscous friction �4� could be ob-
tained by averaging the time t it takes a particle to travel over
one period 	x=a. As expected, with increasing a, the corre-
sponding disorder average �t� /a approached the inverse of
the average drift velocity.

Stationary diffusion with weak interaction. The consid-
ered problem differs from the canonical Kramers problem
�1,2� of over-the-barrier transport, where it is the dynamical
equilibrium that establishes the exponentially different par-
ticle numbers in the “reservoirs” on the two sides of the
barrier. Here, we consider a situation corresponding to a typi-
cal resistivity measurement in a macroscopic sample where
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the total number of particles does not change with the ap-
plied field. Then, the macroscopic current would be deter-
mined solely by the average drift velocity. It is important that
the quantity is self-averaging, as the explicit disorder aver-
aging would not be necessary for large enough samples.

In finite-size systems such a situation arises naturally, e.g.,
when diffusing particles are charged and the electroneutrality
condition needs to be satisfied. The simplest case corre-
sponds to the Debye mean-field screening, where the poten-
tial in Eq. �3� is modified by the self-consistent potential
U�x�→U�x�+e��x�. Specifically, we consider a 1D Poisson
equation

�� = − 4e�n − n̄� , �21�

as would be appropriate for diffusion in a 3D system with 1D
modulation �layered disorder�, a parallel bunch of identical
DNA molecules, or electrostatically coupled identical ionic
cell channels.

In the static equilibrium F=0, the coupled Eqs. �3� and
�21� correspond to the nonlinear screening problem; with
weak disorder, V0�T, the Debye screening length is
�−1 , �2	4n̄e2 /T. The linearized self-consistent screening
problem can be also solved with the nonzero driving force
F�0; the solution involves two screening parameters s±
= ��2+ f2 /4�1/2± f /2, where f 	F /T� j / �D0n̄�	�. Clearly,
in the weak-interaction limit f ��, the shorter screening
length s+

−1� f−1=T /F is determined by the driving force,
while the longer one diverges, s−

−1� f /�2.
With the driving force and a strong disorder, the problem

is forbiddingly complicated. However, if the interaction is
weak, the additional potential would be small, and the
screening equations can be linearized. To this end, it is con-
venient to eliminate the density n from Eqs. �3� and �21� and
write the self-consistent equation for the scaled gradient of
the screening potential �	e���x� /T,

e−V/T� d

dx
− s+eV/T��� + s−�� = � − ��� − s−

V�

T
� ,

where �	�2�V� /T+�− f�. For weak interaction, the last
term in the right-hand side is quadratic in small �2 and can
be ignored. The remaining equation should be solved for �

with zero boundary conditions at infinity. The relation be-
tween the driving force F	 fT and the diffusion current j
	�n̄D0 is established from the self-consistency condition
that the screening does not modify the net driving field.
Equivalently, the disorder averaged ���=0. Approximating
s+� f , after some algebra we again arrive at Eq. �6�.

Conclusions. We analyzed the stationary 1D problem of a
driven diffusion in the presence of a random disorder poten-
tial. For large systems and/or in the presence of an interac-
tion fixing the number of particles transport should be de-
scribed in terms of the effective mobility �. Strong disorder
significantly reduces the mobility and leads to its nontrivial
scaling as a function of the driving field F and the tempera-
ture. With finite-range disorder, the dependence ��F� can be
described in terms of the logarithmic susceptibility �9�, a
generic form for problems with activated transport. For a
strongly driven system with power-law disorder correlation
tail at large distances, the logarithm of the mobility scales as
a power of the driving force �14�. The disorder effect is es-
pecially pronounced for Coulomb-like correlations �see Eq.
�15��: the field-dependent correction to mobility is singular
already at F=0.

The results for field-dependent crossover with strong dis-
order �low temperature� are generic and apply to other
systems/dimensions where the mobility is strongly sup-
pressed by disorder. Indeed, e.g., for the classical diffusion
with zero-mean Gaussian disorder potential in two dimen-
sions, the effective small-field mobility can be found from
the duality arguments �2�c�,11� for the equivalent problem of
effective conductance of a 2D system with the local conduc-
tivity proportional to equilibrium particle density n

�e−V/T , �0 /�2D�0�= �eV/T�=eV0
2/2T2

. The exponent represents
activation to the percolation level at zero energy; it is large
for large V0 /T. An applied field lowers the activation energy
by �F�, which again results in the logarithmic susceptibility
form �9�. With the long-range power-law disorder in 2D, a
more general crossover dependence similar to Eq. �14� is
also expected.
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